## **594.** The Infrared Spectra of Polycyclic Heteroaromatic Compounds. Part I. Monosubstituted Quinolines.

By A. R. KATRITZKY and R. ALAN JONES.

The bands characteristic of the various mono-substituted quinoline nuclei are correlated with those of similarly substituted naphthalenes, and tentative assignments to specific molecular vibration modes are suggested.

THE infrared bands ( $\epsilon_{\rm A} \ge 15$ ) for monosubstituted benzenes, pyridines, pyridine 1-oxides, furans, and thiophens are characteristic of either the substituent or the nucleus.<sup>1</sup> Further, any one nucleus (or substituent) shows a definite number of bands, the positions and intensities of which are either reasonably constant or vary with the electronic nature of the substituent (or nucleus); mass effects are small provided the substituent is attached to the nucleus by a carbon, nitrogen, or oxygen atom. We are now investigating polycyclic compounds, and this paper describes the results for monosubstituted quinolines. For

<sup>1</sup> For references see Katritzky, Quart. Rev., 1959, 13, 353.

reasons already given,<sup>2</sup> where possible, the spectra of 0.189M-chloroform solutions were measured in a 0.106 mm. compensated cell and apparent molecular extinction coefficients measured; the errors and approximations involved are noted in ref. 2. As in our earlier work the bands were characteristic of the ring or of the substituent. The bands characteristic of each class of substituted quinoline were recorded for the following compounds: 2-amino-, -ethoxycarbonylamino-, -methoxy-, -chloro-, -methyl-, -2'-hydroxyethyl-, and -methoxycarbonyl-quinoline; 3-amino-, -acetamido-, -bromo-, -methyl-, -cyano-, -ethoxycarbonyl-, and -nitro-quinoline; 4-amino-, -anilino-, -acetamido-, -methyl-, -cyano-, -carbamoyl-, -formyl-, -methoxycarbonyl-, and -nitro-quinoline; 5-amino-, -thioformamido-, -methoxy-, -hydroxy-, -methyl-, and -nitro-quinoline; 6-amino-, acetamido-, -chloro-, -methyl-, -formyl-, -methoxycarbonyl-, and -nitro-quinoline; 7-chloro-, -methyl-, -ethoxycarbonyl-, and -nitro-quinoline; 8-amino-, -thioformamido-, -hydroxy-, -chloro-, -methyl-, -methoxycarbonyl-, and -nitro-quinoline.

In our work on monocyclic heterocyclic compounds we found that the number and position of the ring stretching bands in the 1600—1400 cm.<sup>-1</sup> region were not very sensitive to the orientation or the nature of the substituents, but that the intensity of these bands was often altered drastically. However, the number and position of the CH in-plane and CH out-of-plane deformation bands depended on the number and orientation of the substituents. The data now obtained lead to similar conclusions for the quinolines, as discussed below. In our work on the monocyclic compounds, we were helped by the assignments Randle and Whiffen <sup>3</sup> made for the bands for substituted benzenes; we have been aided in the present work by Hawkins, Ward, and Whiffen's study of naphthalenes.<sup>4</sup>

The infrared and Raman spectra of quinoline itself have been discussed in detail by Chiorboli and Bertoluzza<sup>5</sup> who have made a nearly complete assignment based on naphthalene.

Ring-stretching Bands in the 1620-1560 cm.<sup>-1</sup> Region.—The results are summarised in Table 1. Three bands are usually found, near 1620, 1590, and 1575 cm<sup>-1</sup>, and these

| Posn. of   |                                         | First band                                              | Seco         | nd band          | Third band   |                   |  |
|------------|-----------------------------------------|---------------------------------------------------------|--------------|------------------|--------------|-------------------|--|
| substn.    | cm1                                     | ε <sub>A</sub>                                          | cm1          | ε <sub>A</sub>   | cm1          | εΑ                |  |
| None       | 1622                                    | 25                                                      | 1598         | 35               | 1576         | 40                |  |
| 2-         | $\{rac{1622}{1608} \pm rac{2}{\pm} 3$ | $250 \longrightarrow 10$<br>$340 \longrightarrow <10$ } | $1588 \pm 6$ | 165 <b>—→</b> 20 | $1570~\pm~4$ | 85> 25            |  |
| 3-         | 1617 $\pm$ 3                            | 15                                                      | ca. 1605     | ca. 35           | $1578\pm 6$  | 25 <b>——</b> 90   |  |
| 4-         | 1617 $\pm$ 2                            | $10\pm5$                                                | $1592\pm 6$  | 180 <b>——</b> 55 | $1573 \pm 3$ | 145 <b>→</b> 20   |  |
| 5-         | $1621 \pm 4$                            |                                                         | $1593~\pm~5$ | 190 - 40         | $1575~\pm~7$ | 135 <b>→ →</b> 35 |  |
| 6-         | $1622\pm3$                              | 80                                                      | $1599\pm5$   | $50~\pm~25$      | $1575\pm3$   | $30~\pm~15$       |  |
|            |                                         | 150                                                     |              |                  |              |                   |  |
| 7-         | $1621 \pm 6$                            | $40 \pm 30$                                             | $1595~\pm~5$ | $50~\pm~15$      | $1570\pm7$   | $30~\pm~5$        |  |
| 8-         | 1619 $\pm$ 6                            | $20\pm5$                                                | $1597~\pm~1$ | 145 - 40         | $1579\pm3$   | $50~\pm~25$       |  |
| All subst. | $1623~\pm~5$                            | $50~{\pm}~50$                                           | $1598\pm8$   | $75 \pm 45$      | $1577 \pm 6$ | $55~\pm~35$       |  |

## TABLE 1. Ring-stretching bands at 1620–1560 cm.<sup>-1</sup>.\*

\* Arithmetical means and standard deviations given.

250 ---- 10 means that the absorption depends upon the electronic properties of the substituent in such a way that it falls from ca. 250 for strong electron-donors to ca. 10 for strong electronacceptors.

positions do not vary greatly (however, 2-substituted quinolines show four bands) Chiorboli and Bertoluzza's <sup>5</sup> work would indicate that modes (I), (II) and (III), and (IV). respectively, were the origin of these bands. The intensity of the first band is low for the 4-, 5-, and 8-substituted compounds; it rises for the 3- and falls for the 2- and 7-substituted

<sup>2</sup> Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
<sup>3</sup> Randle and Whiffen, Paper No. 12, Report on the Conference of Molecular Spectroscopy, Institute of Petroleum, 1954.

<sup>4</sup> Hawkins, Ward, and Whiffen, Spectrochim. Acta, 1957, 10, 105.

<sup>5</sup> Chiorboli and Bertoluzza, Ann. Chim. (Italy), 1959, 49, 245.

quinolines with increasing electron-accepting power of the substituent and shows a more complicated dependence for the 6-isomers.

*Ring-stretching Bands in the* 1500—1350 cm.<sup>-1</sup> *Region* (Table 2).—Five bands are usually found, near 1500, 1470, 1440, 1400, and 1360 cm.<sup>-1</sup>; again, these positions are relatively invariant. The apparent extinction coefficient for the first band is near 100 for the 3-, 4-, 7-, and 8-compounds, and low for the 5-isomers, and it falls with decreasing donor power of the substituent for the 2- and 6-substituted compounds.

The second, third, fourth, and fifth bands frequently have  $\varepsilon_A$  values of *ca*. 20—40. However, the intensity of the second band falls with decreasing electron-donor properties of the substituent for 5- and 8-substituted compounds and falls and then rises for the



corresponding 2-isomers. The third band is absent for 5-substituted compounds and the intensity falls with decreasing electron-donor properties of the substituent for the 2-, 3-, and 4-compounds. The fourth band is absent for the 8-isomers, and is of high intensity for 5-substituted compounds.

Chiorboli and Bertoluzza<sup>5</sup> assigned bands at 1499, 1430, 1400, and 1360 cm.<sup>-1</sup> in



quinoline to modes (V)—(VIII) respectively. Three of these bands correspond to the first, to the third, and to the fifth of our sequences. However, the 1430 cm.<sup>-1</sup> band is at a very high frequency for a CH in-plane vibration (VI), and finding this sequence throughout the various substituted compounds causes us to reject this assignment.

In- and Out-of-plane CH-Deformation Frequencies in the 1300-800 cm.<sup>-1</sup> Region.—By analogy with the similarities found between bands of this type in monosubstituted pyridines with those in benzenes,<sup>1</sup> absorption of the quinolines in this region should be comparable to that of corresponding naphthalenes. Whiffen and his co-workers have shown <sup>4</sup> that the characteristic absorption pattern of naphthalenes in this region could be correlated with the substitution pattern, each ring being treated separately. They



| band                                                                                     | 25                                              | $20\pm15$     | $30 \longrightarrow 90 \ 45 \pm 25 \ 45 \pm 20 \ ca. 30 \ ca. 30 \ ca. 10 \ ca. 20 \ 35 \pm 25 \ 35 \pm 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | УСН                   | $\begin{bmatrix} 1 & \mathbf{e}_{\mathbf{A}} \\ 14 & \mathbf{w} \\ 11 & 15 \pm 5 \\ 0 & () \\ 14 & 30 \pm 25 \\ 5 & 5 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | $\underbrace{ \left( \begin{matrix} \mathfrak{e}_{A} \\ \mathfrak{e}_{A} \\ \mathfrak{e}_{S} \\ (-) \\ (-) \\ 110 \\ -1 \\ 25 \end{matrix} \right) }_{25} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------|-------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fifth band                                                                               | cm. <sup>-1</sup><br>1374                       | $1344\pm8$    | $egin{array}{c} 1374 \pm 10 \ 1361 \pm 8 \ 1372 \pm 4 \ 1348 \pm 7 \ ca. 1350 \ ca. 1350 \ ca. 1355 \ ca. 1355 \ 1358 \pm 14 \ 1358 \ \pm 14 \ 14 \ 1358 \ \pm 14 \ 14 \ 14 \ 14 \ 14 \ 14 \ 14 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                       | $ \begin{array}{c} \mathbf{r}_{\mathbf{A}} \\ \mathbf{p}_{\mathbf{A}} \\ \mathbf{p}_{$ |                                                      | $ \begin{array}{c} & \sum_{\substack{ \text{Cm}, -1 \\ 795 \pm 8 \\ 817 \pm 11 \\ (-) \\ 822 \pm 5 \\ 820 \\ * \end{array} \right] \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| t band                                                                                   | EA<br>15                                        | $65\pm50$     | $\begin{array}{c} ca. \ 15\\ ca. \ 40\\ 95 \pm 30\\ 40 \pm 25\\ ca. \ 20\\ ca. \ 20\\ 80 \pm 70\\ 50 \pm 50\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | YCH                   | cm1<br>948 $\pm$ 7 10 $\longrightarrow$<br>957 $\pm$ 8 m<br>970 $\pm$ 4 10 $\pm$ 1<br>950 $\pm$ 8 30 $\pm$ 1<br>940 $\pm$ 8 30 $\pm$ 1<br>941 $\pm$ 25 1<br>1 to diagrams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | $ \begin{array}{c c} \text{Ring} \\ 6 \\ 6 \\ 10 \\ 10 \\ 10 \\ 4 \\ ca. 20 \\ 10 \\ 10 \end{array} \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| n1 region.<br>Fourth band                                                                | cm. <sup>-1</sup><br>1396                       | $1380\pm16$   | $egin{array}{c} 1420 \pm 6 \ 1395 \pm 6 \ 1417 \pm 10 \ 1376 \pm 10 \ 1385 \pm 5 \ 1388 \pm 10 \ 100 \ 1388 \pm 100 \ 1000 \pm 1000 \pm 1000 \ 1000 \pm 10000 \pm 10000 \pm 100000000$ |                                 | (XII)                 | cm. <sup>-1</sup> $\varepsilon_{A}$ cm. <sup>-1</sup> 40 ± 6       50 ± 40       948 ± 7       10         28 ± 10       var.       957 ± 8       10         3. 1015 $\leqslant$ 10       970 ± 4       10         15 ± 2       15 ± 5       960 ± 8       30         1035       20       940 ± 8       30         1035       20       940 ± 8       30         1.< b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l 6,7,8).                                            | $\begin{bmatrix} \text{cm.}^{-1} \\ 1017 \pm \\ 1043 \pm \\ 1033 \pm \\ 1034 \pm \\ 1034 \pm \\ 1014 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ring-stretching bands in the 1500—1350 cm. <sup>-1</sup> region.<br>Dand Third band Four | €A<br>15                                        | 370 — 💙 25    | $\begin{array}{c c} 80 & & 10 \\ 85 & & 10 \\ 35 & & 20 \\ a. & 15 \\ 15 & \pm 5 \\ 50 & \pm 50 \\ 50 & \pm 50 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Four hydrogen atoms at 5,6,7,8. | $\beta_{\rm CH}$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lso 5,6,7 and                                        | $\left  \begin{array}{c} 10 & \varepsilon_{A} \\ 8 & w_{-}m \\ 8 & 25 \pm 20 \\ 12 & 25 \pm 15 \\ 12 & 25 \pm 15 \\ 5 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <i>in the</i> 150<br>Third band                                                          |                                                 | 9             | - 9<br>- 1405 8<br>10<br>35<br>85<br>11<br>11<br>(24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gen atom                        | (IX)                  | $\begin{bmatrix} \mathbf{r}_{\mathbf{A}} \\ \mathbf{f} \\ 25 \pm 15 \\ 0 \\ \mathbf{w}^{-m} \\ 0 \\ 0 \\ 26 \pm 5 \\ 20 \\ 20 \pm 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 2,3,4 (a                                           | $\begin{array}{c} \beta_{\rm CH} \\ \hline \\ cm.^{-1} \\ cm.^{-1} \\ 1077 \\ \pm \\ 1093 \\ \pm \\ 1093 \\ * \\ {\rm Shc} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| hing bands                                                                               | cm. <sup>-1</sup><br>1435                       | $1428 \pm$    | $1444 \xrightarrow{1448 \pm 9} 1444 \xrightarrow{-} 1_{1448} = 1_{1438} = 1_{1439} = 1_{242} = 1_{435} = 1_{433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433} = 1_{1433$                                                                                                                                                     | Four hydrc                      | $\beta_{\mathrm{CH}}$ | $\begin{array}{c} \begin{array}{c} \text{cm.} -1 \\ \text{cm.} -1 \\ 0 \\ 1137 \pm 1 \\ 1137 \pm 1 \\ 1115 \pm 5 \\ 1142 \pm 4 \\ 1143 \pm 3 \\ 1141 \\ 1141 \\ 1141 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | en atoms a                                           | $(XIV) \\ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . <del>ק</del>                                                                           | 5¥<br>10<br>10                                  | . <b>▲</b> .  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TABLE 3.                        | $\beta_{\rm CH}$ (X)  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Three hydrogen atoms at 2,3,4 (also 5,6,7 and 6,7,8) | $\begin{array}{c} \beta_{\rm OH} \\ \hline \rho_{\rm OH} \\ \hline \rho_{\rm OH} \\ 11160 \pm 5 \\ 11170 \pm 8 \\ 11142 \pm 8 \\ 1131 \pm 4 \\ 1131 \pm 4 \\ 1121 \\ 1121 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TABLE 2.<br>Secon                                                                        | cm. <sup>-1</sup>                               | $1473 \pm 13$ | $\begin{array}{c} 1469 \pm 7 \\ 1465 \pm 5 \\ 1469 \pm 7 \\ 1466 \pm 6 \\ ca. 1445 \\ ca. 1445 \\ 1471 \pm 6 \\ 1466 \pm 8 \\ 1466 \pm 8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | (IX)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TABLE 4.                                             | $(CHCl_{9}) \xrightarrow{(CHCl_{9})} (CHCl_{9}) \xrightarrow{(CHCl_{9})} (CHCL_{9$ |
| First band                                                                               | ε <sub>A</sub><br>110                           | 150 20        | $\begin{array}{c} 80 \pm 15 \\ 80 \pm 60 \\ at 25 \\ 200 \\ \hline at 25 \\ at 45 \\ 125 \pm 60 \\ 95 \pm 50 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | β <sub>CH</sub>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | $\frac{\beta_{\rm CH}}{{\rm cm.}^{-1}}$ 1214 $\pm$ 1304 $\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| First                                                                                    | cm1<br>1506                                     | $1508\pm4$    | $1500 \pm 4$<br>$1507 \pm 4$<br>$1504 \pm 6$<br>$1502 \pm 5$<br>$1503 \pm 5$<br>$1503 \pm 5$<br>$1503 \pm 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                       | ortho-Disubst. benzenes <sup>b</sup><br>Naphthalenes <sup>e</sup><br>2-Subst. quinolines<br>3-Subst. quinolines<br>Quinolines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | 1,2,3-Trisubst. benzenes <sup>d</sup><br>Naphthalenes <sup>e</sup><br>5-Subst. quinolines<br>6-Subst. quinolines<br>7-Subst. quinolines<br>8-Subst. quinolines<br>Quinoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10<br>10<br>10                                                                           | <b>G</b> Fusil, 01<br><b>O</b> substri.<br>None | 2-            | 3-<br>4-<br>5-<br>6-<br>7-<br>8-<br>All subst.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                       | ovtho-Disubst. benz<br>Naphthalenes •<br>2-Subst. quinolines<br>3-Subst. quinolines<br>4-Subst. quinolines<br>Quinolines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | 1,2,3-Trisubst. L<br>Naphthalenes <sup>e</sup><br>5-Subst. quinolii<br>6-Subst. quinolii<br>7-Subst. quinolii<br>8-Subst. quinolii<br>Quinoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

[1960]

| TABLE 5. Three hydrogen atoms at 5,0,8 and 5,1,8.                  |                                                                                         |                                         |                                                                                                     |                         |                                                                              |                            |  |  |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|
|                                                                    | $\beta_{CH}$                                                                            | $\beta_{\rm CH}$ (XVI) $\beta_{\rm CI}$ |                                                                                                     | (XVII)                  | Ring?                                                                        |                            |  |  |  |  |  |
|                                                                    | cm1                                                                                     | εΑ                                      | cm1                                                                                                 | εΑ                      | cm1                                                                          | εΑ                         |  |  |  |  |  |
| 1,2,4-Trisubst. benzenes <sup>d</sup>                              | $1151 \pm 8$                                                                            | m                                       | $1127 \pm 10$                                                                                       | m                       | $1004~\pm~7$                                                                 | Var.                       |  |  |  |  |  |
| Naphthalenes •                                                     | $1180 \pm 10$                                                                           | Var.                                    | $1092 \pm 12$                                                                                       | ms                      | $972\pm9$                                                                    | m                          |  |  |  |  |  |
| 6-Subst. quinolines                                                | $1172 \pm 11$                                                                           | $25\pm15$                               | $1120 \pm 2$                                                                                        | $60~\pm~25$             | $976\pm3$                                                                    | $15\pm 5$                  |  |  |  |  |  |
| 7-Subst. quinolines                                                |                                                                                         |                                         |                                                                                                     |                         | $945\pm4$                                                                    | $25~\pm~10$                |  |  |  |  |  |
|                                                                    | <u>усн</u>                                                                              |                                         |                                                                                                     |                         |                                                                              |                            |  |  |  |  |  |
|                                                                    | ~Y                                                                                      | сн                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                              | сн                      | Ŷ(                                                                           | с <u>н</u>                 |  |  |  |  |  |
|                                                                    | <u>cm1</u>                                                                              | εΑ                                      | <u>−</u> <u>γ</u>                                                                                   | εΑ                      | cm1                                                                          | εΑ                         |  |  |  |  |  |
| 1.2.4-Trisubst. benzenes <sup>d</sup>                              |                                                                                         |                                         | بر                                                                                                  |                         |                                                                              |                            |  |  |  |  |  |
| 1,2,4-Trisubst. benzenes <sup>d</sup><br>Naphthalenes <sup>c</sup> | cm1                                                                                     | εΑ                                      | cm1                                                                                                 | εΑ                      | cm1                                                                          | εΑ                         |  |  |  |  |  |
|                                                                    | $cm.^{-1}$<br>929 $\pm 11$                                                              | ε <sub>A</sub><br>w                     | $cm.^{-1}$<br>868 ± 11                                                                              | ε <sub>A</sub><br>w     | $cm.^{-1}$<br>816 ± 14                                                       | ε <sub>A</sub><br>vs       |  |  |  |  |  |
| Naphthalenes •                                                     | $ \underbrace{ \begin{array}{c} cm.^{-1} \\ 929 \pm 11 \\ 901 \pm 10 \end{array} } \\ $ | ε <sub>A</sub><br>w<br>m—s              | $\begin{array}{c} \overbrace{\text{cm.}^{-1}}^{\leftarrow} \\ 868 \pm 11 \\ 864 \pm 10 \end{array}$ | ε <u>κ</u><br>w<br>m—-s | $ \begin{array}{c} \hline cm.^{-1} \\ 816 \pm 14 \\ 824 \pm 12 \end{array} $ | ε <sub>A</sub><br>vs<br>vs |  |  |  |  |  |

TABLE 5. Three hydrogen atoms at 5,6,8 and 5,7,8.

TABLE 6. Two hydrogen atoms at 2,3.

|                                           | ?                  |      | β <sub>CH</sub> | (XIX) | β <sub>CH</sub> | (XX)      | 20        | n           |  |
|-------------------------------------------|--------------------|------|-----------------|-------|-----------------|-----------|-----------|-------------|--|
|                                           | cm1                | εΑ   | cm1             | εΛ    | cm1             | εΑ        | cm1       | εΑ          |  |
| 1,2,3,4-Tetrasubst. benzenes <sup>d</sup> |                    |      |                 |       | 1165            | s         | 804       | vs          |  |
| Naphthalenes •                            | 1263 <u>-</u> ± 11 | Var. |                 |       |                 |           |           |             |  |
| 4-Subst. quinolines                       |                    |      |                 |       | $1161\pm3$      | $25\pm15$ | $849\pm8$ | $70 \pm 40$ |  |
| <sup>c</sup> Ref. 4. <sup>d</sup> Ref. 3. |                    |      |                 |       |                 |           |           |             |  |

TABLE 7. Two hydrogen atoms at 2,4.

|                                                  | $\beta_{\rm CH}$ (XXI) |   | $\beta_{\rm CH}$ (XXII) |    | γ <sub>CH</sub> out-o           | f-phase | <sub>усн</sub> in-phase |                            |
|--------------------------------------------------|------------------------|---|-------------------------|----|---------------------------------|---------|-------------------------|----------------------------|
| 1.2.3.5-Tetrasubst.                              | cm1                    | ε | cm1                     | εΑ | cm1                             | ε       | cm1                     | εΑ                         |
| benzenes <sup>d</sup>                            |                        |   |                         |    |                                 |         | 851                     | vs                         |
| Naphthalenes <sup>e</sup><br>3-Subst. quinolines |                        |   |                         |    | ${888 \pm 10 \over 890 \pm 10}$ |         |                         | $50\stackrel{ m s}{\pm}35$ |

|                       | β <sub>CH</sub> | (XXIII)           | $(XXIII) \qquad \beta_{CH} \qquad (XXIV)$ |           |              | -phase    | $\gamma_{CH}$ in-phase |            |  |
|-----------------------|-----------------|-------------------|-------------------------------------------|-----------|--------------|-----------|------------------------|------------|--|
|                       | cm1             | εΑ                | cm1                                       | εΑ        | cm1          | εΑ        | cm1                    | εΛ         |  |
| 1,2,3,4-Tetrasubst.   |                 |                   |                                           |           |              |           | 004                    |            |  |
| benzenes <sup>d</sup> |                 |                   | 1165                                      | s         |              |           | 804                    | vs         |  |
| Naphthalenes •        | $1220 \pm 5$    | Var.              | $1151 \pm 5$                              | m         | $940 \pm 14$ | w         | $810\pm10$             | S          |  |
| 2-Subst. quinolines   | . (CHC          | Cl <sub>3</sub> ) | $1141\pm3$                                | $30\pm10$ | $945\pm4$    | ca. 20 ª  | $822\pm10$             | $160\pm60$ |  |
| <sup>a</sup> Intens   | sity of the     | chloro-co         | ompound e                                 | xcepted.  | c, d See ea  | rlier Tab | oles.                  |            |  |

suggested no assignments for these bands, but as each ring could be treated separately an attempt has now been made to correlate these bands with the correlations for similarly substituted (monocyclic) benzenes established by Randle and Whiffen.<sup>3</sup> The data for similarly substituted benzenes, naphthalenes, and quinolines are arranged in Tables 3—8 to bring out these relations. Of 53 band sequences found in this region for the quinolines, it was possible to correlate 46 with the naphthalenes and benzenes as detailed:

| Position of substituent in quinoline                                                | <b>2</b> | 3           | 4              | <b>5</b>   | 6            | 7     | 8          |
|-------------------------------------------------------------------------------------|----------|-------------|----------------|------------|--------------|-------|------------|
| Total no. of bands between $1300-800$ cm. <sup>-1</sup>                             | 9        | 11          | 8              | <b>5</b>   | 9            | 6     | 5          |
| No. correlated in Tables 3-8                                                        | 9        | 8 a         | 7 <sup>b</sup> | 4°         | 8 d          | 6     | 4 °        |
| Additional band sequences at: * 1127 $\pm$ 3 (30 $\pm$ 15                           | ); 980   | $0\pm 6$ (3 | $30 \pm 1$     | 10); and   | $1935$ $\pm$ | 9 (80 | $\pm$ 40); |
| $^{b}$ 1088 $\pm$ 18 (55 $\pm$ 40); $^{c}$ 1001 $\pm$ 17 (ca. 10); $^{d}$ 950 $\pm$ | 5 (10    | $) \pm 5);$ | ° 866          | $5\pm25$ ( | $20 \pm 5$   | j).   |            |

Bands corresponding to some modes are not found, *e.g.*, (XVIII) for 6-substituted quinolines, because they are intrinsically weak.

Previous work has been concerned mainly with the out-of-plane CH deformation modes in the region 900—700 cm.<sup>-1</sup> (which was partially obscured in our work) and has been limited to alkylquinolines. Karr et al.<sup>6</sup> demonstrated that the two strongest CH out-ofplane modes (i.e., the modes with all the hydrogen atoms of each ring moving in phase) of 50 mono- and poly-alkylquinolines could usually be correlated with fair accuracy with the bands of corresponding naphthalenes, benzenes, and pyridines. Shindo and Tamura<sup>7</sup> obtained the spectra of all the monomethylquinolines and reached similar conclusions; they also pointed out that methylquinolines usually showed three bands in the 1600 cm.<sup>-1</sup> region and another near 1500 cm.<sup>-1</sup>.

Other Bands.—The compounds showed the characteristic bands of the substituents; 8 very few bands (less than 2% of the whole) could be correlated with neither the ring nor the substituent.

*Experimental.*—For conditions of measurement see refs. 2 and 6. Compounds were recrystallised or redistilled immediately before measurement.

This work was carried out during the tenure (by R. A. J.) of a D.S.I.R. maintenance grant. We thank Dr. J. M. Pryce and Dr. F. L. Rose, O.B.E., F.R.S., of Imperial Chemical Industries (Pharmaceuticals) Limited, for kindly supplying us with some of the compounds used.

UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE.

[Received, November 18th, 1959.]

<sup>6</sup> Karr, Estep, and Papa, J. Amer. Chem. Soc., 1959, **31**, 152.
 <sup>7</sup> Shindo and Tamura, Pharm. Bull. (Japan), 1956, **4**, 292.

<sup>8</sup> Katritzky and his co-workers, J., 1958, 2182; 1959, 2062, 2067, and in the press.